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ABSTRACT

Inlets for tilt-nacelle VTOL aircraft must operate over a wide rm_ge of in-

cidence angles and enghm weight flows without internal flow separation. Wind

tumml tests of scale model inlets were conducted to evaluate the effectiveness

_-, of thr_'e geometric variables to provide this capability. Increasing the lip con-
y-

traction ratio increased the separation angle at all engine weight flows. The

optimum axial location of the centerbody occurred when its leading edge was

). located just downstream of the inlet lip. Compared with a short centerbody, the :_

optimum location of the centerbody resulted in an increase in separation angle at i
:; all engine weight flows. Decreasing the lip major-to-minor-axis ratio increased

-:}, the separation angle at the lower engine weight flows.
=

INTRODUCTION

Engine inlets for tilt-nacelle VTOL aircraft must operate efficiently over

_ i a wide range of flight speeds, engine weight flows, and incidence angles. Large

incidence angles are imposed on the engine inlet because the nacelles are re-

_. quired to rotate to a vertical position during takeoff and landing maneuvers.

_ As the incidence angle increases, the tendency for the inlet internal flow to ::

separate a._so increases. If flow separation occurs, the resulting fan face dis-

' tortlon couid be large enough to cause excessively high fan blade stresses and _

might al_o cause core-compressor stall. Thus, it is important that the flow ,_,
. _::

: remain attached at the high incidence angles required of inlets for tilt-nacelle :
' VTOL airc-llft. _

The NASA Lewis Research Center is currently engaged in a research pro- _

gram to evaluate the effectiv, mess of several geometric design variables to help "

achieve the high incidence angle capability required of these inlets. One varia- _"

ble being considered is the internal lip contraction ratio. Analytical studies {

_' ' - I t

• t

,)
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(ref._ I to 3) indicate that increasing the contraction ratio is ve_ be,_cficial.

Experimental restflts (refs 4 and 5) are available only for inlets with a maxi-

mum contraction ratio o( 1_ 56. ltowever, inlets applicable to tilt-nacelle VTOL

aircr_t[t will operate to very high incidence angles and, consequently, might re-

quire ¢'ontraction ratios greater than 1.56

A second design variable being considered is the internal lip major-to-

minor-axis ratio. An anal)<ical study (ref. 3) indicates that decreasing this

ratio might be effective at the lower throttle settings but no experimental re-
sults are available.

A third variable being considered is the location of the centerbody within

the inlet cowl. Some preliminary experimental results for a few axial locations

(refs. 6 and 7) indicate that this variable is important. But the most effective
location remains to be de,ermined.

This paper presents the results of an experimental investigation to evaluate

the effectiveness of these three geometric design variables to provide the high

incidence angle capability required by inlets on tilt-nacelle VTOL aircraft. The

effectiveness of increasing the internal lip contraction ratio was evaluated using

inlets with contraction ratios of 1.46, 1.65, and 2.0. For completeness, re-

sults are also presented for a lip contraction ratio of 1.37 from reference 5.

,-' The internal contour of these lips was an ellipse with a major-to-minor-axis

ratio of 2. The effectiveness of decreasing the internal lip major-to-minor-axis

; : ratio was evaluated using inlets with ratios of 2 to 1 and 1.5 to 1. The contrac-

. _ tion ratio of these lips was 1.46. The optimum axial location of the centerbody

i was evaluated for an inlet with a con¢,raction ratio of 1.46 and a major-to-minor-
: axis ratio of 2 to 1. All of these inlets had a diffuser exit diameter (equivalent

to a fan diameter) of 30.48 centimeters.
_ The inlets were tested in the Lewis Research Center's 2.74- by 4.58-meter

• ! low speed wind tunnel. The tests were conducted using a vacuum system to in-

i duce inlet airflow. Results are presented at a tunnel airflow velocity of 41 me-

, : ters per second for incidence angles from 0° to 150°. Inlet average throat Mach
number was varied between 0.30 and 0.79. Measurements were made to deter-

mine inlet total-pressure recovery, steady-state total-pressure distortion, and

incidence angle at flow separation.

SYMBOLS

A area

• a n,aJoL"axis of internal lip (fig. 2)

b minor axis of internal lip (fig. 2)

1

I
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CR internallipcontractionratio(fig.2)

D diameter

inlet total pressure distortion parameter [ (maxnnum total pressure) -

uninimum total pressure}]/{average total pressure)

e axial length oieenterbody forebody {fig. 1)

g axial leng*h ol centerbody aftbody (fig. 1)

L length

Leq equivalent length (fig. 2)

M Mach number

P total pressure

P area averaged total pressure

p static pressure

R radius

V velocity

x axial distance from inlet highlight

a incidence angle between inlet centerline and wind tunnel flow direction

- (fig. 1)

0 inlet diffuser wall angle

\

X diffuser equivalent conical half-angle, tan -1 -
Leq

i

; g, circumferential position (fig. 31

Subscripts:

} cb centerbody

d diffuser
? l " )

dist distortion

" e diffuserexit

I h_ highlight

I hub hub ,:

i
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LE leading edge

max maximum

m in minim urn 'i

t throat _

t_p tip

0 free stream
k

APPARATUS AND PROCEDURE

Inlet Co_ffigurat tons

The inlet nomenclature used is shown in figure ]. and the three geometric

variables investigated are shown in figure "2. One variable was the internal lip

contraction ratio, delined as the ratio of the highlight area to the throat area |-

(Dh_/Dt_2_ . Four contraction ratios were evaluated, 1.37, 1.46, l.d5, and ti
•2.00 trig. 2(aD. The internal contour of these lips was an ellipse with a major-

"_ to-minor-axis ratio, a/b, of 2.0. The second variable was the a/b ratio. :

Two a/b ratios were investigated, 2.0 and 1.5 (fig. 2tb)) for an inlet lip with

=_ a contraction ratio of 1.46. The third variable was the axial location of the

_: centerbodywithinthe inletcowl. This locationisdefinedas theaxialdistance

.. from theinlethighlighttothecenterbodylead£:gedge dividedby theinlet

_,. leng'_h, {x/L)L E. Centerbody axial locations varied from (x/L)L E = -0.123 to
\! 0. 507 (see fig. 2(c-1)). Negative values indicate that the leading edge of the :

(_' centerbodyisahead ofthe inlethighlight,thatis,outsideofthe cowl. The
_ "° inlet lip had a contraction ratio of 1.46 and an a/b ratio of 2. O.

The axiallocationofthecenterbodyeffectedtheaiffuserequivalentconical

'i haft-angle(fig.2(c-2)).With thecenterbodyfullyextended,(x/L)LE = -0.123, '

: the haft-angle was 5.4 °. As the centerbody was retracted to (x/L)L E = 0.2, the :?

,i haft-angle decreased to a value of 3.5 °. As the centerbody was retracted fur- _"
:+' ther, two haft-angles were defined. One Is based on the first set of minimum

_ and maximum areas that occur aR of the cowl highlight (Aminl and Amaxl in .
gr f_" 2(e-2)). This haft-angle increased to a value of 7.6 ° when the centerhody 4

•_., was completely retracted. The second equivalent conical haft-angle is based . :

: on the second set of minimum and maximum areas that occur aft of the cowl high= _

= light {Amin2 and Area L__ in fig. 2{c-_}}. It decreased to a value of about 2° -_"
• • when the centerbody was completely retracted.

The geometry of the diffusers and centerbodles is shown in table I. One :_,

'::, diffuser and centerbody were used for the investigation of contraction ratios ?

.:%, %,, _._

1979006828-005



@

|'

and a/b ratios The diffuserhad an equivalentconicalhalf-angleof 2 9° and f

a maximum wall angle of 8.7 ° occurring at the midpoint of the diffuser. The

centerbodyhad an ellipticalshapev'i:hitsleadingedge locatedat(x/L)LE =
0.64.

A different diffuser and centerbody were used for the investigation of

centerbody axial loca_Aon. This configuration was used previously _or sonic

inlet tests (ref. 7). The diffuser had a maximum wall angle of 10.7 ° occurring

well iorward of the diffuser midpoint The equivalent conical half-angle of this

diffuser, as previously shown in figure 2(c-2), varied bet_een 3.5 ° and 7 6°.

The centerbody had a bulbous shape with i:s maximum diameter 12.5 percent

greater than its hub diameter at the d'ff_fuser exit. The location of the leading

edge of the centerbody, as mentioned, varied between (x/L)L E = -0. 123 and ' "
o. 507

- The bulbous centerbody shape had been selected for the sonic inlet tests

reported in reference 7 This shape was required to provide a constant inlet _ .

throat Mach number over a wide range of inlet weight flows by translating the
centerbody to provide the appropriate inlet, throat area.

,_( Instrumentation

Inlet instrumentation is shown in figure 3 Two axial rows of 20 static

.! _ pressure taps each were located on the inlet extending from the highlight to the
-_,, _ diffuserexit. One row was locatedon thewiadward side(_b:-0°)ofthe inlet

_: _ and the other was located on the leeward side (¢ -- 180°) For this paper, only

thewindward sidedistributionwillbe presentedsincethe most severe flow
conditionsoccur on thisside.

i To detect flow separation from the windward side lip, a static pressuretap halfway between the highlight and throat was used. Its value was displayed

¢. _ on line during the tests. More will be said abo_ this later.
Diffuser exit total pressure measurements were made using both hub and

_,- tip boundary layer rakes as well as rakes spanning the entire annulus. Eight

' full-span total pressure rakes, equally spaced circunderentlally, were used

with six equal-area-weighted tubes per rake. The 16 boundary layer rakes

' (eight at the hub and eight at the tip) each contained five total pressure tubes.

• To detect flow separation in the diffuser, a total pressure tube and a static

pressu,_ tap were located in the diffuser exit plane 3° from the windward slde

• as illustrated in figure 3. The total pressure tube was 0.48 centimeter from

:'_ the outer wall. The difference _etween this total pressure and the wall static

pressure _Pd was displayed on llne during the test. More will be said about
" this later.
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An indication of total pressure distortion was obtained using two total pres-

sure tubes from the diffuser exit rakes; one tube was from the rake on the

windward side (_ = 0°) and the other tube was from the rake on the leeward side

(_ = 180°) as shown in figure 3. This APdist value was also displayed on line
during the tests.

: Inlet total pressure recovery was computed using all measured total pres-
sures, including boundary layer rakes, with the appropriate area weighting

/

, terms. In computinginlettotalpressuredistortion,however, boundary layer

measurements takenclosertothe wallthanthenearesttube on the sixelement

rakeswere omitted. Inletone-dimensionalthroatMach number was computed

usingthe inletweightflowmeasured by a venturilocateddownstream inthe

flowductand thegeometricthroatarea assuming uniform flow.

Facility

The tests were conducted in the Lewis Research Center' s 2.74- by 4.58=

i meter (9- by 15-ft) V/STOL wind tunnel. The test section is shown h figure 4

i with a high contraction ratio inlet model installed. A vacuum system was used
t

in place of a fan to induce inlet flow. Inlet incidence angle was remotely varied

_ _ by a turntable on which the test model was mounted. For the present tests, the
_-' maximum angle-of-attack was 150 °. A more detailed description of the facility

,_. is given in reference 8.i

_i Procedure

_.: ' The inlets were tested at static conditions and at free-stream velocities of _

_.- 41 and 61 meters per second (80 and 120 knots). For this paper, results will
_ : be presented onlyat the free-stream velocity of 41 meters per second. The ,

"_ inlet average throat Mach number was varied between 0.30 and 0."/9. '

:. The data recorded to define the incidence angle at internal flow separation •
_ were obtained by first setting the tunnel velocity and the inlet airflow. On line

datawere then recordedas the incidenceanglewas increased continuously "
:" , from zero at approximately 2° per second. -,._

_.. The data recorded at discrete angles were obtained by setting tunnel re- ;£

_ _ loony and ln__t weight flow while at 0° incidence angle. Data were then re- 2_

.wmms/:_,,.,._.._?, : "-

•- e • it-,, , ,
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RESULTS AND DISCUSSION

This section begins wi_.h a discussion of hc_I internal flow separation was

, detected Then the effect of each of the three geometric variables on inlet

aerodynamic performance is presented. Finally, a comparison of these three

inlet configurations is made.

Detec_Aon of Internal Flow Separation

As mentioned in ),he APPARATUS AND PROCEDURE section, measure-

ments were made to detect internal flow separation on the lip as well as in the

diffuser. An example of the basic experimental data used to identify lip and

diffuser flow separation is shown in figures 5(a) and (b), respectively. The

da+.a are for a constant free-stream velocity and a constant inlet throat Mach

number.

The variation in lip static pressure witch incidence ang|e is shown in fig-

ure 5(a-l). As the incidence angle increases, the lip static pressure continu-

' ously decreases up to some angle _here an abrupt increase occurs indicating

flow separation.

Typical cowl axial static pressure distributions for attached and separated

flow conditions are shown in figure 5(a°2). The distribution for attached flow

: shows a smooth continuous diffusion to the diffuser exit. In comparison, the

distribution for separated flow is relatively fiat showing an absence of diffusion

i on the lip starting at x,/L = 0.15 (the lip extends to x/L = 0.17).
!

_ The variation in diffuser exit total minus static pressure with incidence

". angle is shown in figure 5(b-l). As the incidence angle increases, the diffuser: )
: exit AP d decreases slightly (indicating a thickening of the boundary layer)

until the flow separates and the _Pd abruptly decreases to zero.
Typical radial total pressure profiles at the diffuser exit on the windward

side for attached and separated flow conditions are shown in figure 5(b-2).

The profile for attached flow shows the pressure increasing continuously from

its static value at the cowl (tip) until the free-stream value is achieved at about

,, 70 percent of the duct height from the hub. In comparison, the profile for sepa-

rated flow shows press_res lower than the static value at the cowl (tip) that ex- "

• tend over the outer half of the duct height indicating separated flow. °_

Effect of Contraction Ratio

The effect of increasing the contraction ratio on the incidence angle at •

which internal flow separation occurred is shown tn figure 6. The results are -i_

?
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presented as a function of in]c _,throat Mach number for contraction ratios of

; 1.37, 1 46, ! 65. and 2.0. Each curve i_ the boundary, between attached and

separated flow. Over the entire range of tkroat Mach numbers, increasing the

contraction ratio increased the separation angle. For a contraction ratio of

1.37, the maximum value of this angle was 51°. For a contraction ratio of

' 2.0, the maximum vahm was greater than 150° (150 ° was the largest incidence

angle thai, could be achieved in the facility).

Note that for three of the lip contraction ratios, 1.37, 1.46, and 1.65, the

separation anglc increases with increashlg throat Mach number to a maximum

value that occurs between throat Mach numbers of 0.6 and 0.7 and then de-

creases wir.h further increases in throat Much number. This behavior, as

suggested in reference 5, might be due to the appearance of shock-boundary-

; layer interaction at the higher throat Mach numbers where the flow adjacent

to the surface achieves sonic velocity or greater.

'- It should also be noted that. when internal flow separation occurred it propa-

gated instantaneouslythroughoutt.he entireinlet.This can be seen by examining

:i the behavior of the lip and diffuser separation detectors as a function of inci-
dence angle. Traces of these are shown in figure 7 for a lip contraction ratio

• of 1.46 at a throat Mach number of 0.45. Also shown is the indicator of distor-

tion describedinthe APPARATUS AND PROCEDURE section. Both thelipand

: diffuser separation indicators show an abrupt change at the same incidence angle

_ i (57°) indicating that the flow sepazuted on the lip and in the diffuser at essen-

;i. 1 tially the same time. This type of separation resulted in a very abrupt increase
_, in distortion as can be seen from the distortion indicator. The increase in dis-

tortion might be severe enough to cause excessively high fan blade stresses
:. and/or the losses may be high enough to prevent attainment of the required

" thrust level, thus precluding the possibility of operating the fan in this sepa-

_ rated flow region.

As mentioned, increasing the lip contraction ratio resulted in an increase

:.,_ in the incidence angle before flow separation occurred. An explanation for this

behavior can be given by examining the axial distribution of surface static pres-

• sure shown in figure 8. Results are presented for attached flow at an incidence

angle of 30° and a throat Mach number of O.45.

:. For all contraction ratios, the static pressure decreases to a minimum '

.' value, which occurs on the lip, and then increases to the value at the diffuser

exR (x/L = I. 0). Static pressure at the diffuser exit is the same for all con-

_= i traction ratios for attached flow at a constant throat Much number. But both

I the minimum static pressure and the slope of the static pressure prc_fle im-

mediately followi_ the minimum static pressure (1, e., the initial adverse

979006828-009
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pressure gradientL depend on ,'.he contraction ratio, Both of these parameters

have a large, effect on the tende:ncx of the botmdary laver to separate from the

, internal lip of t.he inlet

Increasing the contraction ratio increases the minimum value of the static

pressure. This in turp reduct, s the overal! amount of diffusion required (dif-

fuser exit static pressure ratio mhms minimum static pressure ratio)• The

initial adverse pressure gradient also is reduced with increasing contraction

ratio. The boundary layer is more likely t.o remain attached to the inlet lip

having the smallest overall amount of diffusion and also the smallest, initial

adverse pressure gradient. Thus, b_creasing the contraction ratio is favor-

able to maintaining at,.ached flow. This is consistent with the results from fig-

ure 6 which showed that increasing the contraction ratio increased the incidence

angle at which flow separation occurred. It should be noted that, for a.t.tached

flow, increasing the contraction ratio had little effect on pressure recovery,

which remained above 0. 995, and distortion level, which remained below 5 per-

cent, for throat Mach numbers of 0.6 and less.

Effect of Lip Major-to-Minor-Axis Ratio

The effect of decreasing the lip major-to-minor-axis ratio, a/b, from 2.0

to 1.5 on the flow separation angle is shown in figure 9. The results are pre-

= sented for a lip contraction ratio of 1.46 as a function of throat Mach number

at a free-stream velocity of 41 meters per second. Decreasing the a/b ratio

i had a beneficial effect on the separation angle at low throat Mach numbers but

an adverse effect at high throat Mach numbers. For throat Mach numbers below
t

0.57, decreasing the a/b ratio increased the separation angle by about 8° at

this free-stream velocity and for this inlet contraction ratio. For higher throat

Mach number, however, decreasing the a/b ratio decreased the separation

angle by as much as 33° .

A possible explan,,tion for this behavior can be given by ex_mtning the

axial distribution of surface static pressure shown in figure 10. Results are

• presented for attached flow at a free-stream velocity of 41 meters per second

i and an incidence angle of 50°. For a throat Mach number of 0.45 (fig. 10(a)),

i the minimum value of the static pressure and thus the greater amount of over-

i all diffusion required occurs for the inlet with a/b = 2.0. The initial adverse :
! _ pressure gradient also appears to be somewhat greater for this a/b ratio. At

, a throat Mach number of 0.60 (fig. 10(b)), however, the trend is reversed with :

the minimum value of the static pressure and the gr_r inR/al adverse pres-

" sure gradient occurring for a/b = I. 5. Thus, at the throat Mach number of
7

: i
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0.45, flow separation is moJ-e likely to occt,,r on the lip with a/b = 2.0. But

at 0 6o throat Mach number separation is more likely to occur on the lip with

a/2) -: 1.5. However, it is not yet known why, at the lower throat Math number.

the minimtml static pressure occurred for an inlet with apa = 2.0 but at tb_.

higher throat Mach namber, the minimum static pressure occurred for an _._,vt

with a/% = 1.5.
!

In addition to having an effect on the separation angle, changing the a/b t:
ratio also effects the total pressure recovery and distortion. This is shown in t

!
figure It as a function of throat Math number for 0° incidence angle at a free-

stream, velocity of 41 meters per second.

Both a/b ratios show a general trend toward lower total pressure recov-

ery and higher total pressure distortion levels with increasing throat Mach

number, But at throat Mach nmnbers above about 0.6, the inlet lip with the i

lower a/b ratio shows the greater decrease in pressure recovery and the ' "

largerincreaseindistortionlevel. "

An explanationforthebehaviorat highthroatMach numbers can be given

by examining the ,lfffuser exit total pressure profiles shown in figure 12. Re-

" suits are presented for both a/b ratios at a throat Mach number of 0.79. The

inletwith a/b = i.5 has a thickerboundary layerresultingin increaseddis- _

• tortion and decreased pressure recovery. The boundary layer is thicker be-

' cause the lip with the lower a/b ratio has the lower minimum value of surface

, static pressure at this throat Mach number {see fig. 10(b)). This, in turn, in-

_; creases the amount of overall diffusion resulting in the thicker boundary layer.
t

'. Effect of Axial Location of Centerbody "

The effect of the axial location of the centerbody on the incidence angle at

which internal flow separation occurs is shown in figure 13. The results are

shown for throat Mach numbers of 0.30, 0.46, 0.60, and 0.7. As the figure

indicates, the axial location of the centerbody has a large effect on the flow

• separation angle. The optimum location (i. e., the location that results in the
: maximum incidence angle before flow separation occurs) is a weak function of "

throat Math number. At throat Math numbeA-s from 0.3 to 0.6, the optimum )

location for the centerbody is at about (x/L)L E = 0.19. This puts the leld__.4_-
edgeof the centerbodyJustdownstreamof the endof the inlet lip {asehownIn

: the insert of fig. 13). At a throat Math number of 0.70, the opU_mn location

occurs whenthe eente Is retractedto (x/I,)Lg : O.
Although the optimum axial lo_ttonof theeenterbody depends to some !

extent on throat Much number, one Mngle-fixed location that is very effective

2
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over the entire rang(, of t.hroat. Ma('h numbers is at (x/L)L E -- 0 19, With the
(:enterbodv at this i(,t'ation, the inlt.: ,'art achieve a significantly higher separa-

tion angle for throat Math number.; beta*con 0 3 and 0 6 than can be achieved

with the inlet, using a short centez_oody (i. e., with the centerbody completely

retracted}. Compared _.othe short centerbody, the maximum increase in the

separation angle is 18° and occurs at a throat Mach number of 0.45.

In addition to having a large effect on the separation angle, the axial loca-

tion of the centerbodv also affected where internal flow separation s_rted (l. e.,

on the lip or in the diffuser) and how it behaved as shown by the open and closed

symbols in figure [3 With the centerbody near its completely ex_cnded loca-

tions (x/L)L E _ 0. 033, flow separation stal_ed in the diffr _er a,_.d mov,_d
steadily forward as the incidence angle was increased. With the centerbody at

the intermediate locations, 0. 033 < (x/L)L E < 0.4, the flow separated instanta-
neously throughout _he entire inlet

This behavior can be clearly illustrated by examining the lip and diffuser

separation detectors, pi and LkPd, respectively, as a function of incidence
angle. Traces of these are shown in figure 14 for a throat Mach number of

0.45 and for two axial locations of the centerbody. Also shown is the indicator

of total pressure distortion, _Pdist"

With the centerbody at. an intermediate axial location, (x/L)LE = 0.19, both
lip and diffuser separation indicators show an abrupt change at the same inci-

dence angle ef 73 ° indicating that the flow separated instantaneously throughout

-_i the entire inlet. Thus the location of the start of separation could not be deter-

! mined. But a reasonable assumption is that separation started on the lip.

This is because less diffusion is required with the centerbody at this location

than with the centerbody fully extended (see fig. 2(c-2)) and thus the lip is more

likely to be the critical element. This type of separation resulted in a sharp

increase in distortion as shown by the abrupt increase in the distortion indica-

tor at the incidence angle of 7 3°.

With the centerbody fully extended (x/L)L E ----0.123, the diffuser separa-
t/on ind/cator showed an abrupt decrease at an ine/dence angle of 41° but the

lip separation indicator showed no corre_pomling abrupt increase. (The change

in the lip separatAon indi__cator at tiffs incidence angle reflects the decrease in

inlet a/rflow caused by diffuser separation. ) As the incidence angle is in- _

creased from 41° , the separation point mows forward in the diffuser until at

an inc/dence angle of 82° tt_plratlon occurs at the hlghl/ght. This lJ lllus- _:

trated in f/sure 15. The ax/al dlstrlbuUon of internal static pressures cmthe

cowl is shown in figure 15(a) and the correspond/ng radial profile of total

pressure st the diffuser exit is shown in figure 15(b). At 0° lnc/dence angle,
the minimum _Ltie pressure occurs near the end of the inlet lip with a smooth

1979006828-012
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continuous di[fuMon 'o the diffuser exit The corresponding radial total pres-

sure prufile sho-':_ no :,viden('e of flow separation. At an incidcace angle of

41°, diffuser separation has occurred at x/L - 0.32 as indicated by the cowl

stati_ pressure, distributio,1 which exhibits a downturn and a flat spot. The

corresponding radial total-pressure profile clearly skows separated flow. At

an _ncidence tingle of 9o ° (_he nearest, angle after separation at which data were

taken), the flow has separated at the highlight since the cowl static pressure

distribu)ion is flat throughou;, the entire inlet. The corresponding radial total-

pressure pin)tile shows a large separated region extending over about. 50 per-

cent of the duct height,

The increase in distortion associated wit, diffuser separation is less

severe than that which occurred when the flow separated instantaneously

through,bout the inlet This can be seen by referring back to figure 14. The

distortion indicator increased to about 0.05 when diffuser separation occurred

compared to a value of 0.16 when the flow separated instantaneously. Au pre-

viously mentioned, the distortion associated with instantaneous separation

might be severe enough to cause excessively high fan blade stresses and/or

a large loss in engine thrust thus precluding the possibility of operating the fan

in separated flow. However, the distortion associated with di,_._er separation

is less severe so that the fan blade stresses might be sufficiently low and the

loss in thrust might not be too much. This would allow the fan to operate in

separated flow. Thus, at axial locations of the centerbody where diffuser sepa-

ration occurs, the inlet engine combination might be able to operate at even

higher incidence angles than shown by the sohd symbols in figure 13.

When the centerbody is near its completely retracted position, the location

where separation starts depends on the throat Mach number. At the lower

throat Mach numbers (0.30 and 0.45), separation starts in the diffuser as indi-

cated by the solid symbols. At the higher throat Mach numbers (0.60 and 0.70),

separation probably starts on the lip as indicated by the open symbols. The

reason for this behavior is not yet known.

Relative Effectiveness of Geometric Yariable_

The effectiveness of L_dets incorporating the three geometric variables

previously discussed is compared in flllUre 16 for two values of inlet throat

Mach number. At both throat Mach numbers {0.45 and 0.'/0} the moot effective

inlet in terms of _ inc/dence an$1e capabfll)y was the one that incorporated

• centerbe@locatedat {x/L)LE =0.19 (theIs. ed.e of the centerbodyis
located near the end of the inlet llp), At • throat Math nu_-ber of 0.45 {fill.

16{a)), this inlet coBfllluratlon, which had • contraction ratio of I. 46, achieved
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an incidence angle of 73° before internal flow separation occurred. In com-

parison, an inlet configura,.ion with a conventional short centerbody required

a contraction ratio of about 1.7 to achieve the same incidence angle before the

flow separated. Hence, incorporating this centerbody in an inlet is equivalep.t
to a substantial increase in the hflet contraction ratio.

At a throat Mach number of 0o7 (fig° 16(b)), this same centerbody position

((x/L)IA_ = 0.19) improv,,d the incidence angle capability of a 1.46 contraction
• ratio inlet to the point where it was equivalent to a 1.55 contraction ratio inlet

with a conventional short centerbody. The higher contraction ratio inlet would

result in an increase in the nacelle maximum diameter (for the same inlet de-

sign throat Math number) wh,ch, in turn, would increase the nacelle weight.

The drag at cruise conditions also woldd be increased.

The inlet with the centerbody located at (x/L)L E = 0.19 also achieved a
higher sepal_tion angle than could be achieved by either of the two a/b ratio
inlets with conventional short centerbodies. For a contraction ratio of 1.46 at

0.45 :hroat Mach number (fig. 16(a)), the separation angle coald be increased

9° compared to an inlet with an a/b ratio of 1.5 and a conventional short

centerbody. At 0.70 throat Mach number and the same contraction ratio (fig.

16(b)), the separation angle could be increased 5° compared to an inlet with an

• a/b ratio of 2.0 and a conventional _ort centerbody. As previously mentioned, ::

/_ the inletwith a/b ratioof I.5 had a higherseparationanglethan theinletwith

::. a/b ratio of 2.0 at 0.45 throat Mach number but at 0.7 throat Mach number the

-: reverse occurred as indicated in the figure.

SUMMARY OF RESULTS _-_

_, Engine inlets for tilt-nacelle VTOL aircraft must operate over a wide
_ range of incidence angles without internal flow separation. Scale model inlets
_ were tested in the NASA Lewis 2.74- by 4.58-meter (9- by 15-it) Low Speed iI

:_ I Wind Tunnel to evaluate the effectiveness of three geometric variables t pro-

_ vide this capability. The three geometric variables were (1) internal lip con- _

_ , tra_¢ion ratio, (2) internal lip major-to-minor-axis ratio, and (3) location of _

,_ the centerbody within the cowl. Free-stream velocity was 41 meters per sec- _

,_ , ond, Inlet average throat Macb number was varied between 0.30 and 0.79, ,_

_: The results of the study may be summarized as follows: ._

1. Increasing the internal lip contraction ratio increamt the incidence _

_:/! angle at which flow separation occurred. For a contraction ratio of 1.37, the
:_ maximum value for this angle was 51°. For a contraction ratio of 2.0, the ,_

_ maximum value was greater than 150° (150 ° was the lari_st Incidence angletha_ could be achieved in the facility). |_ " _

i
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"_ 2. Decreasing the internal lip major-to-minor-axis ratio from 2.0 to 1.5

with an inlet contraction ratio of 1.46 had a beneficial effect on the separation

m_gle at low throat Math nmnbcrs but an adverse effect at high throat Mach

numbers. B_.low a throat Mach nmnber of 0.57, the separation angle was iu-

creased by about o above this throat Mach number, the separation angle was

decreased by as much as 33 °. Also above this throat Mach number, there was

a significant reduction m tile aerodynamic performance (i. e., decreased pres-

sure recovery and increased distortion) for the major-to-minor-axis ratio of

1.5.

3. The axial location of the _enterbo_ had a large effect on the separation

angle. Translating the centerbody from its completely retracted location to the

location where its leadhlg edge was just downstream of the end of the inlet lip

resulted m increasing the separation angle by as much as 1_°.

4. The a.,dal location of the centerbody _fected the behavior of flow separa-

tion. Wi*.h the centerbody near its fully extended or retracted locations, flow

separation generally started in the diffuser and then moved forward as the inci-

: dence angle was increased. At the other centerbody locations, the flow sepa-

' rated instantaneously throughout the entire inlet.

5. Incorporating a centerbody with its leading edge located just downstream

of the end of the inlet lip was equivalent to substantially increasing the inlet

'. contraction ratio. At 0.45 throat Mach nmnber, the effective contraction ratio

of the inlet was increased from 1.46 to 1.7 compared to an inlet with a conven-

tional short centerbody.

: 6. With the centerbody at this location, the inlet could achieve a higher

separation angle than could be achieved by either of the two a/b ratio inlets

" that had conventional short centerbodies. At 0.45 throat Math number, the

separation angle could be increased by as much as 9°.

REFERENCES '_

1. Albers, J. A., and Miller,B. A., "Effectof SubsonicInletLip Geometry on

Predicted Surface and Flow Mach Fumber Distributions," NASA TN Do7446,

2. Albers, J. A., Stockman, N. O., and girn, J. J., "Aerodynamic Analysis t "

i of Several High Throat Mach Number Inlets for the Quiet, Cleau, Short-Haul

: Experimental Engine," NASA TM X-3183, 1975.

3. Boles, M. A., Luidens, R. W., and Stockman, N. O., "T.heoretlcal Flow

Characteristicsof InletsforTiltlng-NacelleVTOL Aircraft,"NASA TP-1205,

., 1978.

i'

1979006828-015



15

4. Jakubowski, A. K., and Luidens, R. W., "Internal Cowl-Separation at High

: Incidence Angles, " AIAA Paper 75-64, Jan. 1975.

5. Miller, B. A., Dastoli, B. J., and Wesoky, H. L., "Effect oi Entry-Lip

Design on Aerodynamics and Acoustics of High Throat Mach Number Inlets

for the Quiet, Clean, Short-Haul Experimental Engine," NASA TM X-3222,

• 1975.

6. Miller, B. A., "Inlets for High Angles of Attack," Journal of Aircraft,

Vol. 13, Apr. 1976, pp. 319-320.

7. Miller, B. A., "Effect of Design Changes on Aerodynamic and Acoustic

Performance of Translating Centerbody Sonic Inlets," NASA TP-I132,

1978.

8. Yuska, J. A., Diedrich, J. H., and Clough, N., "Lewis 9-By 15-Foot

V/STOL Wind "Iunnel," NASA TM X-2305, 1971.

}

4,,

"_

bNr

q_

_ t

i

• j

It

;,_ f.

,. :','!

•. -'._,x'. _.-",.... _"-.'_.... .. "" • .. _ '•_- .7:_-- ..... _.... : " ' _........... _'

] 979006828--0] 6



@

_- 16

TAB1A'I I - SI_MMARY OF INLET F[XED GEOMETRIC PARAMETERS

; (a ! Diffuser

, ] Parameter High Translating
| contraction centerbody
i

' ratio configurationsI

t configurations

Ra',io of exit flow area to throat area, 1.21 Variable
O(o: ' '"- D_lub_/D t

Ra_,io of diffu._er length to exit diameter, 0. 826 0. 875

Ld.'D e

Diffuser exit diameter ratio, Dhub/D e 0.40 0.40

MaY]mum _all angle, 0ma x, deg 8.7 10.7
Equivalent conical haLf-angle, h, deg 2.9 Fig. 2(c-2)

I__eal,ion of maximmn wall angle, 50 26

percent Ld, downstream of throat

Surface contour Cubic Two super-

ellipses

(b) Centerbody

-_" Ratio of length to diameter, Lcb/Dhu b 0.75
Axial location of centerbody leading edge 63.7

i

ill for highcontractionratioconfigurations,

-,_ percent Ld, downstream ofthroat
.L

.: :. Axial location of centerbody leading edge Fig. 2(c-1) [
for translating centerbody corffigurations, i

(x/L)L E ti,

Surface contour Ellipse ]!_
• Ratio of maximum diameter tohub I. 125 !diameter,Dcb/Dhub

Ratio of aftbody length to maximum 0.741

_. diameter, g/Dcb
Ratioof forebodylengthto maximum 0.75 ,.

; diameter,e/Dcb ,
Aftbodysurfacecontour ...... Cubic

Forebody surface contour ...... SupereUipse

,, _4 " 2
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